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Abstract

We give the results of a four-year search for the worst
cases for correct rounding of the major elementary func-
tions in double precision. These results allow the design of
reasonably fast routines that will compute these functions
with correct rounding, at least in some interval, for any of
the four rounding modes specified by the IEEE-754 stan-
dard. They will also allow one to easily test libraries that
are claimed to provide correctly rounded functions.

1 Introduction

In general, the result of an arithmetic operation on two
floating-point (FP) numbers is not exactly representable in
the same FP format: it must be rounded. In a FP system that
follows the IEEE 754 standard [2, 5], the user can choose an
active rounding mode from: rounding towards �1, +1,
0 and to the nearest. The standard requires that the sys-
tem should behave as if the results of the operations +, �,
�, � and

p
x were first computed with “infinite precision”,

and then rounded accordingly to the active rounding mode.
Operations that satisfy this property are called correctly (or
exactly) rounded.

Unfortunately, there is no such requirement for the ele-
mentary functions1, probably because it has been believed
that correct rounding of these functions would be too expen-
sive for double precision (for single precision, since check-

1By elementary functions we mean the radix 2, e and 10 logarithms
and exponentials, and the trigonometric and hyperbolic functions.

ing 232 input numbers is quickly done, there already exist li-
braries that provide correct rounding. See for instance [11]).

Requiring correctly rounded results would not only im-
prove the accuracy of computations: it would help to make
numerical software more portable. Moreover, as noticed by
Agarwal et al. [1], correct rounding facilitates the preser-
vation of useful properties such as monotonicity, symmetry
and important identities. See [10] for more details.

Before going further, let us start with definitions. We call
Infinite mantissa of a nonzero real number x the number

M1(x) = x=2blog2 jxjc:

M1(x) is the real number x0 such that 1 � x0 < 2 and
x = x0�2k, where k is an integer. If x is a FP number, then
M1(x) is the mantissa of its FP representation. If a and b
belong to the same “binade” (they have the same sign and
satisfy 2p � jaj; jbj < 2p+1, where p is an integer), we call
their Mantissa distance the distance between their infinite
mantissas, that is, ja� bj=2p.

Let f be an elementary function and x a FP number.
Unless x is a very special case – e.g., log(1) or sin(0) –,
y = f(x) cannot be exactly computed. The only thing we
can do is to compute an approximation y� to y. If we wish
to provide correctly rounded functions, we have to know
what the accuracy of this approximation should be to make
sure that rounding y� is equivalent to rounding y. In other
words, from y� and the known bounds on the approxima-
tion, the only information we have is that y belongs to some
interval Y . Let us call � the rounding function. Let us call
a breakpoint a value z where the rounding changes, that is,
if t1 and t2 are real numbers satisfying t1 < z < t2 then
�(t1) < �(t2). For “directed” rounding modes (i.e., towards
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+1, �1 or 0), the breakpoints are the FP numbers. For
rounding to the nearest mode, they are the exact middle of
two consecutive FP numbers.

If Y contains a breakpoint, then we cannot provide �(y):
the computation must be carried again with a larger accu-
racy. There are two ways of solving that problem:

� iteratively increase the accuracy of the approximation,
until interval Y no longer contains a breakpoint2. The
problem is that it is difficult to predict how many iter-
ations will be necessary;

� compute, only once and in advance, the smallest
nonzero mantissa distance between the image3 of a FP
number and a breakpoint. This makes it possible to
deduce the accuracy with which f(x) must be approx-
imated to make sure that rounding the approximation
is equivalent to rounding the exact result.

The first solution was suggested by Ziv [12]. It has
been implemented in a library available through the inter-
net4. The last iteration uses 768 bits of precision. There
is no proof that this suffices (the results presented in this
paper actually give the proof for the functions and domains
considered here), but probabilistic arguments[3, 4, 10] show
that requiring a larger precision is extremely unlikely.

We decided to implement the second solution, since the
only way to implement the first one safely is to overestimate
the accuracy that is needed in the worst cases. The basic
principle of our algorithm for searching the worst cases was
outlined in [9]. We now present properties that have allowed
us to hasten the search, as well as the results obtained after
having run our algorithms for 4 years on several worksta-
tions, and consequences of our results. The results we have
obtained are worst cases for the Table Maker’s Dilemma,
that is, FP numbers whose image is closest to a breakpoint.
For instance, the worst case for the natural logarithm in the
full double precision range is attained for

x = 1:011000101010100010000110000100110110001010
0110110110 � 2678

whose logarithm is

log x =

53 bitsz }| {
111010110:0100011110011110101 � � � 110001

000000000000000000 � � � 000000000000000| {z }
65 zeroes

1110:::

2This is not possible if f(x) is equal to a breakpoint. And yet, x = 0
is the only FP input value for which sin(x), cos(x), tan(x), arctan(x)
and ex have a finite radix-2 representation – and the breakpoints do have
finite representations –, and x = 1 is the only FP input value for which
ln(x) has a finite representation. Concerning 2x and 10x, they have a
finite representation if and only if x is an integer. Also, log2(x) (resp.
log10(x)) has a finite representation if and only if x is an integer power of
2 (resp. 10). All these cases are straightforwardly handled separately, so
we do not discuss them in the rest of the paper.

3We call image of x the numberf(x), where f is the elementary func-
tion being considered.

4 http://www.alphaWorks.ibm.com/tech/mathlibrary4java.

This is a “difficult case” in a directed rounding mode, since
it is very near a FP number. One of the two worst cases for
radix-2 exponentials in the full double precision range is

1:1110010001011001011001010010011010111111
100101001101 � 2�10

whose radix-2 exponential is

53 bitsz }| {
1:0000000001010011111111000010111 � � � 0011

0 11111111111111111 � � � 1111111111111111| {z }
59 ones

0100:::

It is a difficult case for rounding to the nearest, since it is
very close to the middle of two consecutive FP numbers.

2 Our algorithms for finding the worst cases

2.1 Basic principles

The basic principles are given in [9], so we only quickly
describe them and focus on new aspects. Assume we wish
to find the worst cases for function f in double precision.
Let us call test number (TN) a number that is representable
with 54 bits of mantissa (it is either a FP number or the exact
middle of two consecutive FP numbers). The TNs are the
values that are breakpoints for one of the rounding modes.
Finding worst cases now reduces to the problem of finding
FP numbers x such that f(x) is closest (for the mantissa
distance) to a TN. We proceed in two steps: we first use
a fast “filtering” method that eliminates all points whose
distance to the closest breakpoint is above a given threshold.
The value of the threshold is chosen so that this filtering
method does not require highly accurate computations, and
so that the number of values that remain to be checked after
the filtering is so small that an accurate computation of the
value of the function at each remaining value is possible.
Details on the choice of parameters are given in [8].

In [9], we suggested to perform the filtering as follows:

� first, the domain where we look for worst cases is split
into “large subdomains” where all input values have
the same exponent;

� each large subdomain is split into “small subdomains”
that are small enough so that in each of them, within
the accuracy of the filtering, the function can be ap-
proximated by a linear function. Hence in each small
subdomain, our problem is to find a point on a grid that
is closest to a straight line. We solve a slightly differ-
ent problem: given a threshold � we just try to know if
there can be a point of the grid at distance less than �
from the straight line. � is chosen so that for one given
small subdomain this event is very unlikely.
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� using a variant to the Euclidean algorithm suggested
by V. Lefèvre [7], we solve that problem. If we find
that there can be a point of the grid at distance less
than � from the straight line, we check all points of the
small subdomain.

2.2 Optimization: f and f�1 simultaneously

Let us improve that method. Instead of finding floating-
point numbers x such that f(x) is closest to a test number,
we look for test numbers x such that f(x) is closest to a
TN. This makes it possible to compute worst cases for f
and for its inverse f�1 in one pass only (the image f(a) of
a breakpoint a is near a breakpoint b if and only if f�1(b)
is near a). One could object that by checking the images of
TNs instead of checking the double precision FP numbers
only, we double the number of points that are examined.
So getting in one pass the results for two functions (f and
f�1) seems to be a no-win no-loss operation. This is not
quite true, since there are sometimes much fewer values to
check for one of the two functions than for the other one.

Consider as an example the radix-2 exponential and log-
arithm, with input domain I = [�1; 1] for 2x, which corre-
sponds to input domain J = [1=2; 2] for log2(y). The two
following strategies would lead to the same final result: the
worst cases for 2x in I and for log2(y) in J .

1. check 2x for every test number x in I ;

2. check log2(y) for every test number y in J .

If we use the first strategy, we need to check all TNs of
exponent between5 �53 and �1. There are 106� 253 such
numbers. With the second strategy, we need to check all
positive TNs of exponent equal to �1 or 0, that is, 2 � 253

numbers. The second strategy is approximately 53 times as
fast as the first one.

If we separately check all FP numbers in I and all FP
numbers in J , we check 106� 252 + 2 � 252. The second
strategy is 27 times as fast as this last method.

Hence, in the considered domain, it is much better to
check log2(y) for every TN y in [1=2; 2]. In other domains,
the converse holds: when we want to check both functions
in the domain defined by x > 1 (for 2x) or y > 2 (for
log2(y)), we only have to consider 10 values of the expo-
nent if we check 2x for every TN in the domain, whereas
we would have to consider 1022 values of the exponent if
we decided to check log2(x) for the TNs in the correspond-
ing domain.

The decision whether it is better to base our search
for worst cases on the examination of f in a given do-
main I or f�1 in J = f(I) can be helped by examining

5For numbers of smaller absolute value, there is no longer any problem
of implementation: their radix-2 exponential is 1 or 1� = 1 � ulp(1=2)
or 1+ = 1 + ulp(1) depending on their sign and the rounding mode.

Tf (x) = jx� f 0(x)=f(x)j in I . If Tf (x) � 1, then I con-
tains fewer test numbers than J , so it is preferable to check
f in I . If Tf (x) � 1, it is preferable to check f�1 in J .
When Tf (x) � 1, a more thorough examination is neces-
sary. In all cases, another important point is which of the
two functions is simpler to approximate.

2.3 Optimization: special input values

For most functions, it is not necessary to perform tests
for the input arguments that are extremely close to 0. For
example, consider the exponential of a very small positive
number �, on a FP format with p-bit mantissas, assuming
rounding to nearest. If � < 2�p then (since � is a p-bit
number), � � 2�p � 2�2p. Hence,

e� � 1 + (2�p � 2�2p) +
1

2
(2�p � 2�2p)2 : : : < 1 + 2�p:

therefore exp(�) < 1 + (1=2)ulp(1). Thus, the correctly
rounded value of exp(�) is 1. A similar reasoning can be
done for other functions and rounding modes. Some results
are given in Table 1.

2.4 Normal and denormal numbers

Our algorithms assume that input and output numbers
are normalized FP values. Hence, we have to check whether
there exist normalized FP numbers x such that f(x) is so
small that we should return a denormal number. To do that,
we use a method based on the continued fraction theory,
suggested by Kahan [6], and originally designed for finding
the worst cases for range reduction. It gives the normal-
ized FP number that is closest to an integer nonzero multi-
ple of �=2. This number is � = 16367173� 272 in single
precision, and � = 6381956970095103� 2797 in double
precision. Therefore, A = j cos(�)j � 1:6 � 10�9 and

Table 1. Some results for small values in double preci-
sion, assuming rounding to the nearest. These results make
finding worst cases useless for negative exponents of large
absolute value.

This function
can be

replaced by
when

exp(�); � � 0 1 � < 2�53

exp(�); � � 0 1 j�j � 2�54

sin(�); arcsin(�) � j�j � 2�26

cos(�) 1 j�j � p
2� 2�27

tan(�); arctan(�) � j�j � 2�27
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B = j cos (�)j � 4:7 � 10�19 are lower bounds on the
absolute value of the sine, cosine and tangent of normal-
ized single precision (for A) and double precision (for B)
FP numbers. These values are larger than the smallest nor-
malized FP numbers. Hence the sine, cosine and tangent of
a normalized FP number can always be rounded to normal-
ized FP numbers.

3 Implementation of the method

3.1 Overview of the implementation

The tests are implemented in three steps:

1. As said above, the first step is a filter. It amounts to
testing if 32 (in general) consecutive bits are all zeroes6

thus keeping one argument out of 232, in average. This
step is very slow and needs to be parallelized.

2. The 2nd step consists of reducing the number of worst
cases obtained from the first step and grouping all the
results together in the same file. This is done with a
slower but more accurate test than in the 1st step. As
the number of arguments has been drastically reduced,
this step is performed on a single machine.

3. The 3rd step is run by the user to restrict the number
of worst cases. Results on the inverse function are also
obtained. This step is very fast.

Most programs are written in Perl (text data handling,
process control. . . ). The tests of the first step have been
written in Sparc assembly language, as they need to be as
fast as possible. For the other calculations, we have used
Maple with an interval arithmetic package.

3.2 Details on the first step

Let us give more details about the first step. The user
chooses a function f , an exponent, a mantissa size (usually
53), and the first step starts as follows.7

� First, the tested interval is split into 213 subintervals Ji
containing 240 TNs and f is approximated by polyno-
mials Pi of degree di (� 4 to 20) on Ji. For each i,
we start with di = 1, and increase di until the approx-
imation is accurate enough. Pi is expressed modulo
the distance between two consecutive TNs, as we only
need to estimate the bits following the mantissa.

6These are the bits following the first 54 bits of the mantissa, unless the
exponent of the output values changes in the tested domain.

7The numbers given here are just those that are generally chosen; other
values may be chosen for particular cases.

� Then, each Ji is split into subintervals Ki;j contain-
ing 215 arguments and Pi is approximated by degree-2
polynomials Qi;j on Ki;j , with 64-bit precision.

� On Ki;j : Qi;j is approximated by a degree-1 poly-
nomial (by ignoring the degree-2 coefficient) and the
variant of the Euclidean algorithm is used. If it fails,
that is, if the obtained distance is too small, then:

� Ki;j is split into 4 subintervals Li;j;k.

� For each k: the Euclidean algorithm is used on
Li;j;k, and if it fails, the arguments are tested the
one after the other, using two 64-bit additions for
each argument.

The program performs the first point (using Maple), gen-
erates a C/assembly source for the following points, then
compiles and executes it.

The first step requires much more time than the other
ones, thus it is parallelized (we have used around 100 work-
stations, in background). As the calculations in different
intervals are totally independent, there is no need for com-
munications between the different machines. We only have
a server that distributes intervals to each client (the program
that performs the tests). The workstations have primary
users. We must not disturb them. So, the programs were
written so that they can run with a low priority, automati-
cally stop after a given time, and automatically detect when
a machine is used and stop if this is the case.

4 Results: ex and ln(x)

For these functions, there is no known way of deducing
the worst cases in a domain from the worst cases in another
domain. And yet, we have obtained the worst cases for all
possible double precision FP inputs. They are given in Ta-
bles 2 and 3. From these results we can deduce the follow-
ing properties.

Property 1 (Computation of exponentials) Let y be the
exponential of a double-precision number x. Let y� be
an approximation to y such that the mantissa distance8 be-
tween y and y� is bounded by �.

� for jxj � 2�30, if � � 2�53�59 = 2�112 then for any
of the 4 rounding modes, rounding y� is equivalent to
rounding y;

� for jxj < 2�30, if � � 2�53�104 = 2�157 then round-
ing y� is equivalent to rounding y.

8If one prefers to think in terms of relative error, one can use the fol-
lowing well-known properties: if the mantissa distance between y and y�

is less than � then their relative distance jy � y�j=jyj is less than �. If
the relative distance between y and y� is less than �r then their mantissa
distance is less than 2�r .
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Property 2 (Computation of logarithms) Let y be the
natural (radix-e) logarithm of a double-precision number x.
Let y� be an approximation to y such that the mantissa dis-
tance between y and y� is bounded by �. If � � 2�53�64 =
2�117 then for any of the 4 rounding modes, rounding y� is
equivalent to rounding y.

5 Results: 2x and log2(x)

5.1 Radix-2 exponentials

Using the identity 2n+x = 2n2x allows one to efficiently
speed the search. First, getting the worst cases for x 2 [1; 2)
makes it possible to derive all worst cases for x < �1 and
x > 1. The worst cases for jxj < 1 were obtained through
the radix-2 logarithm in (1=2; 2). These results, given in
Table 4, make it possible to deduce the following property.

Property 3 (Computation of radix-2 exponentials) Let y
be the radix-2 exponential 2x of a double-precision num-
ber x. Let y� be an approximation to y such that the
mantissa distance between y and y� is bounded by �. If
� � 2�53�59 = 2�112 then for any of the 4 rounding modes,
rounding y� is equivalent to rounding y.

5.2 Radix-2 logarithms

Concerning radix-2 logarithms, let us show that it suf-
fices to test the input numbers greater than 1, and whose
exponent is a power of 2.

First, it suffices to test the input numbers whose expo-
nent is a positive power of 2 to get the worst cases for all
input values greater than 1. Consider x = m � 2p, with
p � 1 and 1 � m < 2. Define y = log2(x) = p+log2(m).
M1(y) begins with `p = blog2(p)c bits that represent p,
followed by the representation of log2(m). Let p0 = 2`p .
Since blog2(p0)c = blog2(p)c = `p, the infinite mantissa
of the radix-2 logarithm y0 of x0 = m � 2p

0

has the same
bits as M1(y) after position `p. Hence, there is a chain
of k consecutive 1s (or 0s) after bit 54 of M1(y) if and
only if there is a chain of k consecutive 1s (or 0s) after bit
54 of M1(y0). Hence, from the worst cases for an expo-
nent equal to 2` we deduce the worst cases for exponents
between 2` + 1 and 2`+1 � 1. In Table 5, we only give one
of the worst cases: the input value has exponent 512. The
other ones have the same mantissa, and exponents between
512 and 1023.

Now, let us show how to deduce the worst cases for num-
bers less than 1 from the worst cases for numbers greater
than 1. Consider a FP number x = m � 2�p, with 1 <
m < 2, and p � 1. Define y = log2(x) = �p+ log2(m).
The integer part of jyj is p � 1 and its fractional part is

1 � log2(m). So M1(y) begins with the bits that repre-
sent p� 1, followed by the bits that represent 1� log2(m).
Now, consider the FP number x0 = m � 2p�1. Define
y0 = log2(x

0) = (p � 1) + log2(m). M1(y0) begins
with the bits that represent p � 1 (the same as for y), fol-
lowed by the bits that represent log2(m). But the bits that
represent 1 � log2(m) are obtained by complementation9

of the bits that represent log2(m). Hence, there is a chain
of k consecutive 1s (or 0s) after bit 54 of M1(y) if and
only if there is a chain of k consecutive 0s (or 1s) after
bit 54 of M1(y0). Therefore, x is the worst case for in-
put values < 1 if and only if x0 is the worst case for in-
put values > 1. This is illustrated in Table 5: the infi-
nite mantissa of the worst case for x > 1 starts with the
same bit chain (1000000000) as the mantissa of the worst
case for x < 1, then the bits that follow are complemented
(100010001111110 : : : 000110 0 0551100::: for the case x < 1
and 011101110000001 : : : 111001 1 1550011::: for x > 1).

Using these properties, we rather quickly obtained the
worst cases for the radix-2 logarithm of all possible double
precision input values: it sufficed to run our algorithm for
the input numbers of exponents 0, 1, 2, 4, 8, 16, . . .512.

These results, given in Table 5, make it possible to de-
duce the following property.

Property 4 (Computation of radix-2 logarithms) Let y
be the radix-2 logarithm log2(x) of a double-precision
number x. Let y� be an approximation to y such that the
mantissa distance between y and y� is bounded by �. If
� � 2�53�55 = 2�108 then for any of the 4 rounding
modes, rounding y� is equivalent to rounding y.

6 Results: trigonometric functions

The results given in Tables 6 to 11 give the worst cases
for functions sin, arcsin, cos, arccos, tan and arctan. For
these functions, we have worst cases in some bounded do-
main only, because they are more difficult to handle than the
other functions. And yet, it is sometimes possible to prune
the search. Consider the arc-tangent of large values. The
double precision number that is closest to �=2 is

� = 884279719003555=249:

Assuming rounding to the nearest, the breakpoint that is im-
mediately below � is � = 141484755040568 79=253: For
any FP number x, if arctan(x) � � then the correctly
rounded (to the nearest) value that should be returned when
evaluating arctan(x) in double precision is �. Hence, for
x � 5805358775541311, we should return �. Similarly,
for 2536144836019042 � x � 5805358775541310, we
should return �� ulp(�).

91 is replaced by 0 and 0 is replaced by 1.
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Table 2. Worst cases for the exponential function in the full range. Exponentials of numbers less than ln(2�1074) are underflows
(a routine should return 0 or the smallest non zero positive representable number, depending on the rounding mode). Exponentials
of numbers larger than ln(21024) are overflows.

Interval worst case (binary)

[ln(2�1074);�2�30]
exp (�1:1110110100110001100011101111101101100010011111101010 � 2�27)

= 1:1111111111111111111111111000010010110011100111000100 1 1590001::: � 2�1

[�2�30; 0)
exp(�1:0000000000000000000000000000000000000000000000000001 � 2�51)

= 1:1111111111111111111111111111111111111111111111111100 0 01001010::: � 2�1

(0;+2�30]
exp(1:1111111111111111111111111111111111111111111111111111 � 2�53)

= 1:0000000000000000000000000000000000000000000000000000 1 11040101:::

[2�30; ln(21024)]

exp(1:0111111111111110011111111111111011100000000000100100 � 2�32)
= 1:0000000000000000000000000000000101111111111111101000 0 0571101:::

exp(1:1000000000000001011111111111111011011111111111011100 � 2�32)
= 1:0000000000000000000000000000000110000000000000010111 1 1570010:::

exp(1:1001111010011100101110111111110101100000100000001011 � 2�31)
= 1:0000000000000000000000000000001100111101001110010111 1 0571010:::

exp(110:00001111010100101111001101111010111011001111110100)
= 110101100:01010000101101000000100111001000101011101110 0 0571000:::

Table 3. Worst cases for the natural (radix e) logarithm in the full range.

Interval worst case (binary)

[2�1074 ; 1)

log(1:1001010001110110111000110000010011001101011111000111 � 2�384)
= �100001001:10110110000011001010111101000111101100110101 1 0601010:::

log(1:1110101001110001110110000101110011101110000000100000 � 2�509)
= �101100000:00101001011010100110011010110100001011111111 1 1600000:::

log(1:0010011011101001110001001101001100100111100101100000 � 2�232)
= �10100000:101010110010110000100101111001101000010000100 0 0601001:::

(1; 21024 ]
log(1:0110001010101000100001100001001101100010100110110110 � 2678)

= 111010110:01000111100111101011101001111100100101110001 0 0641110:::

For rounded to nearest arc-tangent, the worst case for
input numbers larger than 2:25� 1012 is

4621447055448553=211 = 2256565945043:2387 69 53 12 5

whose arc-tangent is

53 bitsz }| {
1:100100100001111110 : : : 100 1 045111011 : : :

From the result given in Table 6 we deduce:

Property 5 (Computation of sines) Let y be the sine of a
double-precision number x satisfying 1=32 � jxj � 2. Let
y� be an approximation to y such that the mantissa distance
between y and y� is bounded by �. If � � 2�53�65 = 2�118

then for any of the 4 rounding modes, rounding y� is equiv-
alent to rounding y.

Using Tables 7 to 11, similar properties are deduced for
the other trigonometric functions: � � 2�117 for arc-sine

between sin(1=32) and 1; � � 2�108 for cosine between
1=64 and 12867=8192; � � 2�115 for arc-cosine between
cos (12867=8192) and cos(1=64); � � 2�110 for tangent be-
tween 1=32 and arctan(2); and � � 2�108 for arc-tangent
between tan(1=32) and 2.

Conclusion and future work

The worst cases we have obtained will make possible
the design of efficient routines for evaluating most common
functions with correct rounding (at least in some intervals)
in the four rounding modes specified by the IEEE-754 stan-
dard. We are extending the domains for the functions for
which we have not yet obtained the worst cases in the full
range. These worst cases will also be good test cases for
checking whether a library provides correct rounding or not.
Since the machines are getting faster and faster, what we
have done for double precision will probably be feasible for
double extended precision within a few years. Concerning
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Table 4. Worst cases for the radix-2 exponential function 2x in the full range. Integer values of x are omitted.

Interval worst case (binary)

[�1074; 0)

2 � �(�1:0010100001100011101010111010111010101111011110110010 � 2�15)
= 0:11111111111111100110010100011111010001100000111101111 0 0571110:::

2 � �(�1:0100000101101111011011000110010001000101101011001111 � 2�20)
= 0:11111111111111111111001000010011001010111010011001110 1 1570000:::

2 � �(�1:0000010101010110000000011100100010101011001111110001 � 2�32)
= 0:11111111111111111111111111111111010010101101101100001 1 1570000:::

2 � �(�1:0001100001011011100011011011011011010101100000011101 � 2�33)
= 0:11111111111111111111111111111111100111101101010111100 0 0571100:::

(0; 1024]

2 � �(1:1011111110111011110111100100010011101101111111000101 � 2�25)
= 1:0000000000000000000000001001101100101100001110000101 0 0591011:::

2 � �(1:1110010001011001011001010010011010111111100101001101 � 2�10)
= 1:0000000001010011111111000010111011000010101101010011 0 1590100:::

Table 5. Worst cases for log2(x) in the full range. Values of x that are integer powers of 2 are omitted.

Interval worst case (binary)

(0; 1=2)
log2(1:0110000101010101010111110111010110001000010110110100 � 2�513)

= �1000000000:1000100011111101001011111100001011001000110 0 0551100:::

(1=2; 21024)
log2(1:0110000101010101010111110111010110001000010110110100 � 2512)

= 1000000000:0111011100000010110100000011110100110111001 1 1550011:::

quad precision, the only hope of getting similar results in
the near future is a possible algorithmic breakthrough. The
path to such a breakthrough could be a reasonably fast al-
gorithm for getting the point of a regular grid that is closest
to a polynomial curve of degree 2.
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Table 6. Worst cases for the sine function in the range [1=32; 2].

Interval worst case (binary)

[1=32; 1]
sin 1:1111111001110110011101110011100111010000111101101101 � 2�2

= 1:1110100110010101000001110011000011000100011010010101 1 1650000::: � 2�2

[1; 2]
sin(1:1001001000011111101101010100010001000010110100011000)

= 0:11111111111111111111111111111111111111111111111111111 1 1540110:::

Table 7. Worst cases for the arc-sine function in the range [sin(1=32) = 0:0312449 : : : ; 1].

Interval worst case (binary)

[sin(1=32); 1]
arcsin(1:1110100110010101000001110011000011000100011010010110 � 2�2)

= 1:1111111001110110011101110011100111010000111101101101 0 0641000::: � 2�2

Table 8. Worst cases for the cosine function in the range [1=64; 12867=8192]. 12867=8192 is slightly less than �=2.

Interval worst case (binary)

[1=64; 1]
cos(1:1001011111001100110100111101001011000100001110001111 � 2�6)

= 0:11111111111010111011001101011101010000111000010101000 1 1550111:::

[1; 12867
8192

]
cos(1:0110101110001010011000100111001111010111110000100001)

= 1:0011001101111111110001011011000001110010110001010010 1 0541011::: � 2�3

Table 9. Worst cases for the arc-cosine function in the range [cos(12867=8192); cos(1=64)] � [0:0001176; 0:999878].

Interval worst case (binary)

[cos
�
12867

8192

�
; cos(1)]

arccos(1:1111110101110011011110111110100100010100010101111000 � 2�11)
= 1:1001000111100000000001101101010000011101100011011000 1 1620010:::

Table 10. Worst cases for the tangent function in the range [1=32; arctan(2)], with arctan(2) � 1:107148.

Interval worst case (binary)

[ 1
32
; arctan

�
1

2

�
]

tan(1:0101000001001000011010110010111110000111000000010100 � 2�5)
= 1:0101000001111000110011101011111111111001110001110010 1 0571001::: � 2�5

[arctan
�
1

2

�
; arctan(2)]

tan(0:10100011010101100001101110010001001000011010100110110)
= 0:10111101110100100100111110111001110011000001010011110 1 1540011:::

Table 11. Worst cases for the arc-tangent function in the range [tan(1=32); 2], with tan(1=32) � 0:0312601.

Interval worst case (binary)

[tan
�
1

32

�
; 1
2
]

arctan(1:1010100100110011111111100001011101101011001101110101 � 2�3)
= 1:1010001100111111001100101010110001011100111010110100 1 1550110::: � 2�3

[ 1
2
; 2]

arctan(0:10111101110100100100111110111001110011000001010011111)
= 0:10100011010101100001101110010001001000011010100110110 0 0551111:::
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