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Abstract 

The Table Maker 5 Dilemma is the problem of always get- 
ting exactly rounded results when computing the elemen- 
taryfinctions. After a briefpresentation of this problem, we 
present new developments that helped us to solve this prob- 
lem for the double-precision exponential function in a small 
domain. These new results show that this problem can be 
solved, at leastfor the double-precisionformat, for the most 
usual functions. 

1. Introduction 

The IEEE-754 standard requires that the results of the 
arithmetic operations should always be exactly rounded. 
That is, once a rounding mode is chosen, the system must 
behave as if the result were first computed exactly, with in- 
finite precision, then rounded. There is no similar require- 
ment for the elementary functions. 

Requiring correctly rounded results not only improves 
the accuracy of computations: it is the best way to make nu- 
merical software portable. Moreover, as noticed by Agar- 
wal et al. [ 11, correct rounding facilitates the preservation of 
useful mathematical properties such as monotonicity, sym- 
metry, and some identities. 

We want to implement a function f (f being sine, cosine, 
exponential, logarithm or arctangent) in a radix-2 floating- 
point number system, with n mantissa bits. We assume that 
from any real number z and any integer m (with m > n), 
we are able to compute an approximation of f(z) with an er- 
ror on its mantissa y less than or equal to 2-m. This can be 
achieved with the presently known methods, using polyno- 
mial or rational approximations or Cordic-like algorithms, 
provided that a careful range reduction is performed [ 13,16, 
41. The intermediate computations can be carried out using 
a larger fixed-point or floating-point format. 

Therefore the problem is to get an n-bit floating-point ex- 
actly rounded result from the mantissa y of an approxima- 
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tion of f(x), with error +2-m. One can easily see that this 
is not possible if y has the form: 

l in rounding to the nearest mode, 

m bits 
/ 
1.22222 

\ 
” . . . XX? 1000000. . . 000000 xxx. . . \ 

n bits 
or 

m bits 
/ 
J.xxxxz 

\ 
. . .ZXc0111111.. .llllllZZa:. . . ; , 

n bits 

l in rounding towards 0, +oc or -oc modes, 

m bits 
/ 
l.xxxxz ” . . . xx~ooooooo I , . ..ooooooxxx... 

n bits 

or 

m bits 
i.xxxxx.. . xx2 1111111.. . lllliixxx.. . . 

n bits 

This problem is known as the Table Maker’s Dilemma 
(TMD) [9]. For example, assuming a floating-point arith- 
metic with B-bit mantissa, 

sin(ll.lO1O) = 0.0~~01111110.. . , 

a problem may occur with rounding to the nearest if the sine 
function is not computed accurately enough. 

Our problem is to know if there is a maximum value for 
m, and to estimate it. If this value is not too large, then com- 
puting exactly rounded results will become possible. 

In 1882, Lindemann showed that the exponential of a 
nonzero (possibly complex) algebraic number is not alge- 
braic [2]. From this we easily deduce that the sine, cosine, 
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exponential, or arctangent of a machine number different 
from zero cannot be a machine number (and cannot be ex- 
actly between two consecutive machine numbers), and the 
logarithm of a machine number different from 1 cannot be 
a machine number (and cannot be exactly between two con- 
secutive machine numbers). Therefore, for any x (the cases 
z = 0 and 2 = 1 are obviously handled), there exists m 
such that the TMD cannot occur. This is not always true 
for functions such as 2”, log, x, or xv. This is why we do 
not consider them in this paper. Since there is a finite num- 
ber of machine numbers x, there exists a value of m such 
that for any x the TMD cannot occur. Schulte and Swart- 
zlander [14, 151 proposed algorithms for producing exactly 
rounded results for the functions l/x, square root, 2” and 
log, x in single-precision. Those functions are not discussed 
here, but Schulte and Swartzlander’s result helped us to start 
our study. To find the correct value of m, they performed an 
exhaustive search for n = 16 and n = 24. For n = 16, 
they found m = 35 for log, x and m = 29 for 2”, and 
for n = 24, they found m = 51 for log, x and m = 48 
for 2”. One would like to extrapolate those figures and find 
m x 2n. 

In [ll], two of us showed that if the bits of f(x) after 
the n-th position can be viewed as if they were random se- 
quences of zeroes and ones, with probability i for 0 as well 
as for 1, then for n-mantissa bit normalized floating-point in- 
put numbers, assuming that n, different exponents are con- 
sidered, m is close to 2n + log, (n,) with very high proba- 
bility. Similar probabilistic studies have been done by Dun- 
ham [6], and by Gal and Bachelis [S]. 

Of course, probabilistic arguments do not constitute a 
proof: they can only give an estimate of the accuracy re- 
quired during the intermediate computation to get a cor- 
rectly rounded result. There are a few results from number 
theory, such as the Nesterenko-Waldschmidt theorem [12], 
given below that can be applied to find upper bounds on m. 

If p/g is arational number, with g > 0 and gcd(p, g) = 1, 
let us define H(p/q) as max{ lpi, g}. 

Theorem 1 (Yu. Nesterenko and M. Waldschmidt 
(1995)) Let a, p be rational numbers, with /3 # 0. Let A, 
B and E be positive, real numbers with E 2 e satisfying 

A L max (H(a), e) , B 2 H(P). 

Then 

IeP - aI > 
exp 

( 
-211 x (log B + log log A + 2 log(E]P]+) + 10) 

x (log A + 2EI/.?I + 6 log E) x (3.3 lag(2) + log E) 
x (log E)-2) 

where IpI+ = max( 1, ]fll). 

In [ll], this theorem was used to show that getting ex- 
actly rounded results in double-precision could be done 
with m x 1000 000. Although computing functions with 
1000 000 digits is feasible (on current machines, this would 
require less than half an hour using Brent’s algorithms [3] 
for the functions and Zuras’ algorithms [18] for multiplica- 
tion), this cannot be viewed as a satisfactory solution. More- 
over, after the probabilistic arguments, the actual bound is 
likely to be around 110. Therefore, we decided to study how 
could an exhaustive search of the worst cases be possible. 

2. Exhaustive Tests 

2.1. Introduction 

An approach to ensure the exact rounding of an elemen- 
tary function f at a reasonable cost is to search, by means 
of exhaustive tests, for the arguments x for which the Table 
Maker’s Dilemma occurs if f(x) is approximated with error 
2-“0. Here, me is chosen (using the probabilistic results) 
so that there are a few such arguments only. For these ar- 
guments, f(s) could be stored in tables or computed with a 
more accurate algorithm. By the way, these elements could 
be used to design algorithms for computing f by the means 
of Gal’s Accurate Tables Method [7]. 

The exhaustive search is restricted to a given interval; 
outside this interval other methods can be chosen. Indeed, if 
x is small enough (less than 2-53), an order-l Taylor expan- 
sion can be used, and if x is large enough, the exponential 
gives an overflow, and the values of trigonometric functions 
do not make much sense any longer for most applications 
(although we would prefer to always give exactly rounded 
results). 

A similar work for the single-precision floating-point 
numbers have already been done by various authors [ 14,111. 
The following study has been done for the exponential with 
double-precision arguments in the interval [$, l), but will be 
extended to other intervals and other functions. Results con- 
cerning other intervals cannot be deduced from the results in 
[ fr, l), thus these intervals will have to be considered later; 
for the time being, we only wanted to show mat an exhaus- 
tive search is possible for double-precision numbers. 

Concerning the double-precision normalized floating- 
point numbers (n = 53), there are 252 possible mantissas 
(the first bit is always l), which is a large number. Thus 
one of the most important concerns is that the test program 
should be as fast as possible, even though it is no longer 
portable (we only used SparcStations). Indeed, one cy- 
cle per test corresponds to two years of computation on a 
71 MHz reference machine: any cycle is important! 
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2.2. Algorithm (general idea) 

The TMD occurs for an argument x if the binary expan- 
sion of f(x) has a sequence of consecutive O’s or l’s starting 
from a given position, where the position and the length of 
the sequence depend on the final and the intermediate pre- 
cisions. The problem consists in checking for all z whether 
these bits are all O’s or all l’s, and in this case, finding the 
maximal value of m for which the TMD occurs. 

To get fast tests, we apply a two-step strategy similar to 
Ziv’s [17]. The first step must be very fast and eliminate 
most arguments; the second one, that may be much slower, 
consists in testing again the arguments that have failed at 
the first step, by approximating their exponential with higher 
precision. 

The first step consists in testing a given subsequence of 
the binary expansion (bits of weight 2-54 to 2--(“-1)) of an 
approximation of each f(x) with error 2-M. In our case, we 
have chosen M = 86 from the algorithm and the processor 
characteristics. The test fails if and only if these bits are the 
same, and the argument will have to be checked during the 
second step. In the opposite case, one can easily show that 
the bits 54 to M of the exact result cannot all be equal. 

2.3. First Step 

2.3.1. Chosen Method 

To perform the first step, the exponential function is ap- 
proximated by a polynomial. The chosen polynomial must 
have a low degree for the following reasons: on the one 
hand, to reduce the computation time, on the other hand, to 
limit possible rounding errors. As a consequence, the ap- 
proximation is valid on a small interval only. 

Let us consider an interval [-2r-53, 2rPs3), where r is 
a positive integer (it will be about 15), in which we know a 
polynomial approximation. We can use the formula 

et+” zz ei.e” 

where x is in this interval, to test every argument in the range 
l/2 to 1. 

The main idea consists in computing a polyno- 
mial approximation of the exponential in the intervals 
[t - 2r-53, t + 2r-53), then evaluating the obtained 
polynomial at consecutive values by the finite difference 
method [lo]. This method is attractive, for it only requires 
additions (two for each argument in the case of a polynomial 
of degree two, which was chosen) and the computations 
can be performed modulo 2-53 (the first tested bit having 
weight 2-54). Thus the algorithm consists of two parts: 

l the computation of the et’s with error 2-‘, where t will 
have the form (2e + 1)2’-53 (and will be between l/2 
and l), 

l the computation of the et+l’s with error 2-M, where x 
is in [-2r-53, 2T-53), knowing et with error 2-“. 

We now give the values that have been chosen: r = 16, 
M = 86 and s = 88. They have been determined from 
an error analysis (giving relations between r, M and s) and 
hardware parameters (register width and disk size). 

2.3.2. Computing the et’s 

We seek to compute ue = eY+” with error 2-“, where 
y = l/2 + 2r-53, z = 2r-52 and ! is an integer such that 
0 < e < 251--r. 

The following method allows to compute a new term with 
only one multiplication (using the formula ea+b = ea.eb), 
with a balanced computation tree to avoid losing too much 
precision, and without needing to store too many values up, 
the disk storage being limited. 

We write e in base 2: e = &o--re49--r . . . lo. We have 
eY+er = eY eeo*eel 1 . . . e’;z’: where ei = (eZ)2” ; to sim- 
plify, ev and;h0e ei’s are precomputed. 

The problem now consists in computing for all 
I G {O,l,. . . , h} containing h: 

iEI 

where the ei’s are the above precomputed values (eh = ey). 
For that, we partition {O,l, . . . , h} into two subsets that 
have the same size (or almost) to balance, and we apply this 
method recursively on each subset (we stop the recursion 
when the set has only one element); then we calculate all 
the products xy, where x is in the first subset and y is in the 
second subset. The last products zy are computed later, just 
before testing the corresponding interval. 

These computations can be performed sequentially on 
one machine: they only need several minutes. 

2.3.3. Computing and Testing the et+“% 

The computation of the etf”‘s are performed with the fi- 
nite difference method, which allows to calculate consecu- 
tive values of a polynomial of degree d with only d addi- 
tions for each value. The exponential e” is approximated by 
1 + x + $x2. Let us take a simple example: P(x) = x3. 

One first evaluates P(O), P(l), . . . . P(d) (in the exam- 
ple, d = 3) with any method. Then one calculates the finite 
differences: below two consecutive elements x and y, one 
writes y - x. Then one can successively calculate the other 
values P(d + l), P(d + 2), etc... with additions, as shown 
on the figure. 

In fact, the polynomial is not given by its first values 
P(O), P(l), . . . . P(d), but by the elements on the left in each 

134 

Proceedings of the 13th Symposium on Computer Arithmetic (ARITH '97)
1063-6889/97 $10.00 © 1997 IEEE 



line (surrounded on the figure), which are the coefficients of 
the polynomial in the base 

1 1 x X(X-1) X(X-1)(X-2) 
> , 2 ’ 3! 1 “.’ ’ 

as this base is more suited to our computations. 
The test of the bits cannot be performed with only one in- 

struction on a Spare processor. It consists in testing whether 
a number is in a given interval centered on 0 modulo 2-53. 
With the finite difference method, we can translate the inter- 
val so that its lower bound is 0,.and we can use an unsigned 
comparison to test whether the number is in the interval; thus 
we finally need only one instruction. 

Thus the tests take 5 cycles per argument in average (two 
64-bit additions and one 32-bit comparison), the time re- 
quired by the other computations being negligible. 

2.3.4. Faster Tests 

The algorithm given above has been used during the sum- 
mer of 1996. We present the results below. Before this, let 
us examine how it could be improved. 

First, we can test both a function and its inverse at the 
same time. As we would need to test twice as many num- 
bers as before, it seems that we would save nothing, but this 
is no longer true in combination with the following methods. 

Since testing a function and testing its reciprocal are 
equivalent, we can choose the function that is the fastest to 
test, i.e. the function for which the number of points to test is 
the smallest in the given domain; of course, this choice may 
depend on the considered domain. 

We can approximate a degree-2 polynomial by several 
degree-l polynomials in subintervals (which is not equiva- 
lent to directly approximating the function by degree-l poly- 
nomials). By doing this, the tests would require 3 cycles 
per argument in average instead of 5 cycles. But we may do 
better: now we have a function that may be simple enough 
(a translation of a linear function) to find an attractive algo- 
rithm based on advanced mathematical properties. We are 
finalizing an algorithm that would require O(log N) time to 
test the N arguments in the subinterval. With such an algo- 
rithm, we can save a factor almost 2 by doubling the num- 
ber of arguments, for instance. Thus it is better to perform 
computations with a lower precision in order to increase the 

lengths of the intervals in which the function can be approx- 
imated by a degree-l polynomial. If the test fails, the inter- 
val will be split in subintervals and another test will be per- 
formed in each subinterval with a higher precision. 

2.3.5. Parallelizing on a Computer Network 

The total amount of CPU time required for our compu- 
tations is several years. We wanted to quickly get the re- 
sults of the tests (within a few months). Therefore we had 
to parallelize the computations. We used our network of 120 
workstations, which often have a null load. We sought to use 
each machine at its maximum without disturbing its user; in 
particular, the process uses very little memory and there are 
very few communications (e.g. NFS access). 

2.4. Second Step 

The second step consists in a more precise test for the ar- 
guments that failed during the first step. The exponential is 
computed with a higher precision, chosen so that the proba- 
bility that the test fails for an argument is very low. 

We chose a variation of De Lugish’s algorithm [5] for 
computing the exponential (since it contains no multiplica- 
tion). The computations were performed on 128-bit integers 
(four 32-bit integers). The algorithm was implemented in 
assembly language (which is, for the present purpose, sim- 
pler than in C). 

2.5. Results 

We tested the exponential function with double-precision 
arguments in the interval [f , 1). 

In 1996, we used up to 121 machines during three months 
for the first step. The second step was carried out in less than 
one hour on one machine. 

In January 1997, we performed the first step again on a 
few machines with a new algorithm based on degree-l poly- 
nomials as explained in section 2.3.4. We reached an aver- 
age speed-up of 150: 30 arguments tested per cycle in aver- 
age. 

Among all the 1048 576 intervals each containing 
232 values, 2 097 626 exceptions have been found. From 
the probabilistic approach, the estimated number of excep- 
tions was to be 2 097 152. This shows that the probabilistic 
estimate was excellent. 

For each double-precision number x, we define an integer 
k such that the mantissa of exp x has the following form: 

or 

boblbz . . . bs2 bss000. . .OO 1. . . 
-- 

53 bits k bits 

bohbz . . . bs2 b5a111.. .llO.. . . 
-- 

53 bits k bits 
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From the probabilistic hypotheses, k 2 Lo for given num- 
bers x and ko with a probability of 22-k0. 

In the following table, we give the following numbers as 
a function of ko (with ko > 40) for 4 5 x < 1: 

l the actual number of arguments for which k = ko; 

l the actual number of arguments for which k 2 ko; 

l the estimated (with the probabilistic hypotheses) num- 
ber of arguments for which k 2 ko: 252 x 22-ko, i.e. 
254-k,, 

G- k = k. k > k. estimate 
40 8185 -GE- 16384.0 
41 4071 8242 8192.0 
42 2113 4171 4096.0 
43 999 2058 2048.0 
44 541 1059 1024.0 
45 258 518 512.0 
46 123 260 256.0 
47 63 137 128.0 
48 43 74 64.0 
49 14 31 32.0 
50 5 17 16.0 
51 7 12 8.0 
52 1 5 4.0 
53 2 4 2.0 
54 1 2 1.0 
55 1 1 0.5 

We see that the probabilistic estimate is still very good. 

The exception for k = 55 is z = 0.11010110011001 
111101111100100011010110100111011110000,with 

expx = 10.010011111000010111001001011110 
000011110111001110000 0 154 01.. . . 

Therefore the value of m for the exponential function in 
[ $, 1) in double-precision is 109 = 53 + 55 + 1. 

3. Conclusion 

We have shown, using as an example the case of 
the exponential function in [f, l), that exactly rounding 
the double-precision elementary functions is an achievable 
goal. Moreover, if all the values of m have the same or- 
der of magnitude as the value we obtained for the exponen- 
tial function (this is likely to be true), always computing ex- 
actly rounded functions will not be too expensive. To ob- 
tain the right value of m for other functions and domains, 
we need some help: we would like to run our programs on 
several networks of workstations. Our programs were writ- 
ten for Spare-based machines, but a small portion of the code 

only is written in assembly code, so that getting programs for 
other machines would be fairly easy. Of course, it is very un- 
likely that somebody will be able to perform exhaustive tests 
for quadruple-precision in the near future, but our experi- 
ment shows that the estimates obtained from the probabilis- 
tic hypotheses are quite good, so that adding a few more dig- 
its to 2n+logs(n,) for the sake of safety will most likely en- 
sure correct rounding (it is important to notice that if correct 
rounding is impossible for one argument, we can be aware 
of that, so a flag can be raised). Therefore we really think 
that in the next ten years, libraries and/or circuits providing 
exactly rounded double-precision elementary functions will 
be available.. . if you help! 
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