Introduction to the GNU MPFR Library

Vincent LEFÈVRE

INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon

CNC'2, LORIA, 2009-06-25

Outline

- Presentation, History
- MPFR Basics
- Output Functions
- Test of MPFR (make check)
- Applications
- Conclusion

GNU MPFR in a Few Words

- GNU MPFR is an efficient multiple-precision floating-point library with well-defined semantics (copying the good ideas from the IEEE-754 standard), in particular correct rounding.
- 80 mathematical functions, in addition to utility functions (assignments, conversions. . .).
- Special data (Not a Number, infinities, signed zeros).
- Originally developed at LORIA, INRIA Nancy Grand Est. Since the end of 2006, MPFR has become a joint project between the Arénaire and CACAO project-teams.
- Written in C (ISO + optional extensions); based on GMP (mpn/mpz).
- Licence: LGPL (currently 2.1 or later).

MPFR History

- 1998–2000 ARC INRIA *Fiable*.

 November 1998 Foundation text (Guillaume Hanrot, Jean-Michel Muller,
- Joris van der Hoeven, Paul Zimmermann).
 - Early 1999 First lines of code (G. Hanrot, P. Zimmermann).
 - 9 June 1999 First commit into CVS (later, SVN).
- June-July 1999 Sylvie Boldo (AGM, log).
 - 2000–2002 ARC AOC (Arithmétique des Ordinateurs Certifiée).
 - February 2000 First public version.
 - March 2000 APP (Agence pour la Protection des Programmes) deposit.
 - June 2000 Copyright assigned to the Free Software Foundation.
- December 2000 Vincent Lefèvre joins the MPFR team.
 - 2001–2002 David Daney (1-year postdoc).

MPFR History [2]

```
2003-2005 Patrick Pélissier.
```

- 2004 GNU Fortran uses MPFR.
- September 2005 MPFR 2.2.0 is released (shared library, TLS support).
 - October 2005 The MPFR team won the Many Digits Friendly Competition.
 - August 2007 MPFR 2.3.0 is released (shared library enabled by default).
 - 2007-2009 Philippe Théveny.
 - October 2007 CEA-EDF-INRIA School Certified Numerical Computation.
 - March 2008 GCC 4.3.0 release: GCC now uses MPFR in its middle-end.
 - January 2009 GNU MPFR 2.4.0 is released (now a GNU package).
 - March 2009 MPFR switches to LGPL v3+ (trunk, for MPFR 3.x).

Other contributions: Mathieu Dutour, Laurent Fousse, Emmanuel Jeandel, Fabrice Rouillier, Kevin Ryde, and others.

Representation and Computation Model

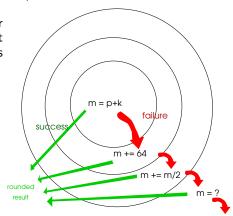
Extension of the IEEE-754 standard to the arbitrary precision:

- Base 2, precision $p \ge 2$ associated with each MPFR number.
- Format of normal numbers: $\pm 0. \underbrace{1b_2b_3 \dots b_p}_{p \text{ bits}} \cdot 2^e$ with $E_{\text{min}} \leq e \leq E_{\text{max}}$ (E_{min} and E_{max} are chosen by the user, $1-2^{30}$ and $2^{30}-1$ by default).
- No subnormals, but can be emulated with mpfr_subnormalize.
- Special MPFR data: ± 0 , $\pm \infty$, NaN (only one kind, similar to sNaN).
- Correct rounding in the 4 rounding modes of IEEE 754-1985: Nearest-even, Downward, Upward, toward Zero.
 In the future MPFR 3: Away from zero.
- Correct rounding in *any* precision for *any* function. More than the accuracy, needed for reproducibility of the results and for testing arithmetics.

Caveats

- Correct rounding, variable precision and special numbers

 → noticeable overhead in very small precisions.
- Correct rounding → much slower on (mostly rare) "bad" cases, but slightly slower in average. Ziv's strategy in MPFR:
 - first evaluate the result with slightly more precision (m) than the target (p);
 - ▶ if rounding is not possible, then $m \leftarrow m + (32 \text{ or } 64)$, and recompute;
 - ▶ for the following failures: $m \leftarrow m + |m/2|$.



 \bullet Huge exponent range and meaningful results \to functions sin, cos and tan on huge arguments are very slow and take a lot of memory. But. . .

Example: $sin(10^{22})$

Environment	Computed value of sin 10 ²²	
Exact result	$-0.8522008497671888017727\dots$	
MPFR (53 bits)	-0.85220084976718879	
Glibc 2.3.6 / x86	0.46261304076460175	
Glibc 2.3.6 / x86_64	-0.85220084976718879	
Mac OS X 10.4.11 / PowerPC	-0.8522008497 <mark>7909205</mark>	
Maple 10 (Digits $= 17$)	-0.85220084976718880	
Mathematica 5.0 (x86?)	0.462613	
MuPAD 3.2.0	-0.9873536182	
HP 700	0.0	
HP 375, 425t (4.3 BSD)	-0.65365288	
Solaris/SPARC	-0.852200849	
IBM 3090/600S-VF AIX 370	0.0	
PC: Borland TurboC 2.0	4.67734e-240	
Sharp EL5806	-0.090748172	

Note: 5^{22} fits on 53 bits.

MPFR Program to Compute sin(10²²)

```
#include <stdio.h>
                    /* for mpfr_printf, before #include <mpfr.h> */
#include <assert.h>
#include <gmp.h>
#include <mpfr.h>
int main (void)
 mpfr_t x; int inex;
 mpfr_init2 (x, 53);
  inex = mpfr_set_ui (x, 10, GMP_RNDN); assert (inex == 0);
 inex = mpfr_pow_ui (x, x, 22, GMP_RNDN); assert (inex == 0);
 mpfr_sin (x, x, GMP_RNDN);
 mpfr_printf ("sin(10^22) = %.17Rg\n", x); /* new in MPFR 2.4.0 */
 mpfr clear (x);
 return 0;
}
```

Compile with: gcc -Wall -02 sin10p22.c -o sin10p22 -lmpfr -lgmp

Exceptions (Global/Per-Thread Sticky Flags)

Invalid Result is not defined (NaN).

Examples: 0/0, $\log(-17)$, but also mpfr_set on a NaN.

Overflow The exponent of the rounded result with unbounded exponent range would be larger than $E_{\rm max}$.

Examples: $2^{E_{\text{max}}}$, and even mpfr_set(y,x,GMP_RNDU) with $x = \text{nextbelow}(+\infty)$ and prec(y) < prec(x).

Underflow The exponent of the rounded result with unbounded exponent range would be smaller than E_{\min} .

Examples: If $E_{min} = -17$, underflow occurs with 0.1e-17 / 2 and 0.11e-17 - 0.1e-17 (no subnormals).

Inexact The returned result is different from the exact result.

Erange Range error when the result is not a MPFR datum.

Examples: $mpfr_get_ui$ on negative value, $mpfr_cmp$ on (NaN, x).

TODO: Add a DivideByZero (IEEE 754) or Infinitary (LIA-2) exception: an exact infinite result is defined for a function on finite operands.

The Ternary Value

Most functions that return a MPFR number as a result (pointer passed as the first argument) also return a value of type int, called the *ternary value*:

- = 0 The value stored in the destination is exact (no rounding) or NaN.
- > 0 The value stored in the destination is greater than the exact result.
- < 0 The value stored in the destination is less than the exact result.

When not already set, the *inexact* flag is set if and only if the ternary value is nonzero.

Memory Handling

- Type mpfr_t: typedef __mpfr_struct mpfr_t[1];
 - when a mpfr_t variable is declared, the structure is automatically allocated (the variable must still be initialized with mpfr_init2 for the significand);
 - in a function, the pointer itself is passed, so that in mpfr_add(a,b,c,rnd), the object *a is modified;
 - associated pointer: typedef __mpfr_struct *mpfr_ptr;
- MPFR numbers with more precision can be created internally.
 Warning! Possible crash in extreme cases (like in most software).
- Some MPFR functions may create caches, e.g. when computing constants such as π . Caches can be freed with mpfr_free_cache.
- MPFR internal data (exception flags, exponent range, caches...) are either global or per-thread (if MPFR has been built with TLS support).

Some Differences Between MPFR and IEEE 754

- No subnormals in MPFR, but can be emulated with mpfr_subnormalize.
- MPFR has only one kind of NaN (behavior is similar to signaling NaNs).
- No DivideByZero exception. Invalid is a bit different (see NaNs).
- Mathematical functions on special values follow the ISO C99 standard rather than IEEE 754-2008 (more recent than the MPFR specifications).
- Memory representation is different, but the mapping of a bit string (specified by IEEE 754) into memory is implementation-defined anyway.
- Some operations are not implemented.
- And other minor differences.

Output Functions

	Simple output	Formatted output	
To file mpfr_out_str		mpfr_fprintf, mpfr_printf	
To string mpfr_get_str		mpfr_sprintf	
MPFR version	old	2.4.0	
Locale-sensitive yes (2.2.0)		yes	
Base	2 to 36 2, 10, 16		
Read-back exactly yes (prec $= 0$)		yes ¹ (empty precision field)	

 $^{^{1}}$ Except for the conversion specifier g (or G) — documentation of MPFR 2.4.1 is incorrect.

Simple Output (mpfr_out_str, mpfr_get_str)

Base b: from 2 to 36 (will be from 2 to 62 in MPFR 3).

Precision n: number of digits or 0. If n = 0:

- The number of digits m is chosen large enough so that re-reading the printed value with the same precision, assuming both output and input use rounding to nearest, will recover the original value of op.
- More precisely, if p is the precision of op, then $m = \lceil p. \log(2)/\log(b) \rceil$, and $m = \lceil (p-1). \log(2)/\log(b) \rceil$ when b is a power of 2 (it has been check that these formulas are computed exactly for practical values of p).

Output to string: mpfr_get_str (on which mpfr_out_str is based).

Formatted Output Functions (printf-like)

New feature in MPFR 2.4.0!

Conversion specification:

```
% [flags] [width] [.[precision]] [type] [rounding] conv
```

```
Examples (32-bit x \approx 10000/81 \approx 123.45679012):
```

Test of MPFR (make check)

In the GCC development mailing-list, on 2007-12-29:

> On 29 December 2007 20:07. Dennis Clarke wrote:

http://gcc.gnu.org/ml/gcc/2007-12/msg00707.html

```
>> >> Do you have a testsuite ? Some battary of tests that can be thrown at the >> code to determine correct responses to various calculations, error >> conditions, underflows and rounding errors etc etc ? >> There's a "make check" target in the tarball. I don't know how thorough > it is.

That is what scares me.
```

Dennis

17 / 35

Test of MPFR (make check) [2]

Exhaustive testing is not possible.

- → Particular and generic tests (random or not).
 - Complete branch coverage (or almost), but not sufficient.
 - Function-specific or algorithm-specific values and other difficulties (e.g., based on bugs that have been found).
 - Bug found in some function.
 - Corresponding particular test added.
 - Analysis:
 - * Reason of the bug?
 - ★ Can a similar bug be found somewhere else in the MPFR code (current or future)?
 - Corresponding generic test(s) added.

What Is Tested

- Special data in input or output: NaN, infinities, ± 0 .
- Inputs that yield exceptions, exact cases, or midpoint cases in rounding-to-nearest.
- Discontinuity points.
- Bit patterns: for some functions (arithmetic operations, integer power), random inputs with long sequence of 0's and/or 1's.
- Thresholds: *bad cases*, underflow/overflow thresholds (currently for a few functions only).
- Extreme cases: tiny or huge input values.
- Reuse of variables (reuse.c), e.g. in mpfr_exp(x,x,rnd).
- The influence of previous data: exception flags, sign of the output variable.
- Weird exponent range (not in the generic tests yet), e.g. [17,59].

The Generic Tests (tgeneric.c)

Basic Principle

A function is first evaluated on some input x in some target precision p+k, and if one can deduce the result in precision p (i.e., the TMD does not occur), then one evaluates f on the same input x in the target precision p, and compare the results.

- The precision p and the inputs are chosen randomly (in some ranges).
 Special values (tiny and huge inputs) can be tested too.
- Functions with 2 inputs (possibly integer) are supported.
- The exceptions are supported (with a consistency test of flags and values).
- The ternary value is checked.
- The evaluations can be performed in different flag contexts (to check the sensitivity to the flags).
- In the second evaluation, the precision of the inputs can be increased.
- The exponent range is checked at the end (bug if not restored).

Testing Bad Cases for Correct Rounding (TMD)

- Small-precision worst cases found by exhaustive search (in practice, in double precision), by using function data_check of tests.c. These worst cases are currently not in the repository. Each bad case is tested
 - ightharpoonup in rounding-to-nearest, in target precision p-1,
 - ▶ in all the directed rounding modes in target precision p,

where *p* is the minimal precision of the corresponding *breakpoint*.

- Random bad cases (when the inverse function is implemented), using the fact that the input can have more precision than the output (function bad_cases of tests.c):
 - **1** A precision p_y and a MPFR number y of precision p_y are chosen randomly.
 - One computes $x = f^{-1}(y)$ in a precision $p_x = p_y + k$.
 - \rightarrow In general, x is a bad case for f in precision p_y for directed rounding modes (and rounding-to-nearest for some smaller precision).
 - One tests x in all the rounding modes (see above).

TODO: use Newton's iteration for the other functions?

Application 1: Test of Sum Rounded to Odd

Algorithm OddRoundedAdd

```
function z = \text{OddRoundedAdd}(x, y)

d = \text{RD}(x + y);

u = \text{RU}(x + y);

e' = \text{RN}(d + u);

e = e' \times 0.5; { exact }

z = (u - e) + d; { exact }
```

This algorithm returns the sum z = x + y rounded-to-odd:

- RO(z) = z if z is a machine number;
- otherwise RO(z) is the value among RD(z) and RU(z) whose least significant bit is a one.

The corresponding MPFR instructions:

```
mpfr_add (d, x, y, GMP_RNDD);
mpfr_add (u, x, y, GMP_RNDU);
mpfr_add (e, d, u, GMP_RNDN);
mpfr_div_2ui (e, e, 1, GMP_RNDN);
mpfr_sub (z, u, e, GMP_RNDN);
mpfr_add (z, z, d, GMP_RNDN);
```

Application 1: Test of Sum Rounded to Odd [2]

```
#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
#include <mpfr.h>
#define LIST x, y, d, u, e, z
int main (int argc, char **argv)
  mpfr t LIST;
  mp prec t prec;
  int pprec; /* will be prec - 1 for mpfr printf */
  prec = atoi (argv[1]);
  pprec = prec - 1;
  mpfr_inits2 (prec, LIST, (mpfr_ptr) 0);
```

Application 1: Test of Sum Rounded to Odd [3]

```
if (mpfr_set_str (x, argv[2], 0, GMP_RNDN))
  {
    fprintf (stderr, "rndo-add: bad x value\n");
    exit (1);
mpfr_printf("x = \%.*Rb\n", pprec, x);
if (mpfr_set_str (y, argv[3], 0, GMP_RNDN))
  {
    fprintf (stderr, "rndo-add: bad y value\n");
    exit (1);
mpfr printf ("y = \%.*Rb\n", pprec, y);
```

Application 1: Test of Sum Rounded to Odd [4]

```
mpfr_add (d, x, y, GMP RNDD);
mpfr printf ("d = %.*Rb\n", pprec, d);
mpfr add (u, x, y, GMP RNDU);
mpfr printf ("u = \%.*Rb\n", pprec, u);
mpfr add (e, d, u, GMP RNDN);
mpfr div 2ui (e, e, 1, GMP RNDN);
mpfr printf ("e = %.*Rb\n", pprec, e);
mpfr sub (z, u, e, GMP RNDN);
mpfr_add (z, z, d, GMP_RNDN);
mpfr printf ("z = \%.*Rb\n", pprec, z);
mpfr_clears (LIST, (mpfr_ptr) 0);
return 0;
```

Application 2: Test of the Double Rounding Effect

Arguments: d_{\max} , target precision n, extended precision p (by default, p=n). Return all the couples of positive machine numbers (x,y) such that $1/2 \le y < 1$, $0 \le E_x - E_y \le d_{\max}$, x-y is exactly representable in precision n and the results of $\lfloor \circ_n(\circ_p(x/y)) \rfloor$ in the rounding modes toward 0 and to nearest are different.

```
#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>
#define PRECN x, y, z /* in precision n, t in precision p */
static unsigned long
eval (mpfr_t x, mpfr_t y, mpfr_t z, mpfr_t t, mpfr_rnd_t rnd)
{
 mpfr_div (t, x, y, rnd); /* the division x/y in precision p */
 mpfr_set (z, t, rnd); /* the rounding to the precision n */
 mpfr_rint_floor (z, z, rnd); /* rnd shouldn't matter */
 return mpfr_get_ui (z, rnd); /* rnd shouldn't matter */
}
```

Application 2: Test of the Double Rounding Effect [2]

```
int main (int argc, char *argv[])
  int dmax, n, p;
 mpfr_t PRECN, t;
  if (argc != 3 && argc != 4)
    { fprintf (stderr, "Usage: divworst <dmax> <n> [ ]\n");
      exit (EXIT FAILURE); }
 dmax = atoi (argv[1]);
 n = atoi (argv[2]);
  p = argc == 3 ? n : atoi (argv[3]);
  if (p < n)
    { fprintf (stderr, "p must be greater or equal to n\n");
      exit (EXIT FAILURE): }
 mpfr_inits2 (n, PRECN, (mpfr_ptr) 0);
 mpfr_init2 (t, p);
```

Application 2: Test of the Double Rounding Effect [3]

```
for (mpfr_set_ui_2exp (x, 1, -1, GMP_RNDN);
     mpfr_get_exp (x) <= dmax; mpfr_nextabove (x))</pre>
  for (mpfr_set_ui_2exp (y, 1, -1, GMP_RNDN);
       mpfr_get_exp (y) == 0; mpfr_nextabove (y))
      unsigned long rz, rn;
      if (mpfr_sub (z, x, y, GMP_RNDZ) != 0)
        continue; /* x - y not representable in precision n */
      rz = eval (x, y, z, t, GMP_RNDZ);
      rn = eval (x, y, z, t, GMP_RNDN);
      if (rz != rn)
        mpfr_printf ("x = %.*Rb ; y = %.*Rb ; Z: %lu ; N: %lu\n",
                     n - 1, x, n - 1, y, rz, rn);
    }
mpfr_clears (PRECN, t, (mpfr_ptr) 0);
return 0;
```

Application 3: Continuity Test

```
Compute f(1/2) in some given (global) precision for
f(x) = (g(x) + 1) - g(x) and g(x) = \tan(\pi x).
#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>
int main (int argc, char *argv[])
  mp_prec_t prec;
  mpfr_t f, g;
  if (argc != 2)
      fprintf (stderr, "Usage: continuity2 <prec>\n");
      exit (EXIT FAILURE);
    }
```

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Application 3: Continuity Test [2]

```
prec = atoi (argv[1]);
mpfr_inits2 (prec, f, g, (mpfr_ptr) 0);
mpfr const pi (g, GMP RNDD);
mpfr div 2ui (g, g, 1, GMP RNDD);
mpfr tan (g, g, GMP RNDN);
mpfr add ui (f, g, 1, GMP RNDN);
mpfr sub (f, f, g, GMP RNDN);
mpfr_printf("g(1/2) = \%-17Rg f(1/2) = \%Rg\n", g, f);
mpfr_clears (f, g, (mpfr_ptr) 0);
return 0;
```

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

Application 3: Continuity Test [3]

Precision	2	g(1/2) = 16	f(1/2) = 0
Precision	3	g(1/2) = 14	f(1/2) = 2
Precision	4	g(1/2) = 14	f(1/2) = 1
Precision	5	g(1/2) = 120	f(1/2) = 0
Precision	6	g(1/2) = 120	f(1/2) = 0
Precision	7	g(1/2) = 121	f(1/2) = 1
Precision	8	g(1/2) = 2064	f(1/2) = 0
Precision	9	g(1/2) = 2064	f(1/2) = 0
Precision	10	g(1/2) = 2068	f(1/2) = 0
Precision	11	g(1/2) = 2066	f(1/2) = 2
Precision	12	g(1/2) = 2067	f(1/2) = 1
Precision	13	g(1/2) = 4172	f(1/2) = 1
Precision	14	g(1/2) = 8502	f(1/2) = 1
Precision	15	g(1/2) = 17674	f(1/2) = 1
Precision	16	g(1/2) = 38368	f(1/2) = 1
Precision	17	g(1/2) = 92555	f(1/2) = 1
Precision	18	g(1/2) = 314966	f(1/2) = 2

Application 3: Continuity Test [4]

Precision	19	g(1/2)	=	314967	f(1/2) = 1
Precision	20	g(1/2)	=	788898	f(1/2) = 1
Precision	21	g(1/2)	=	3.18556e+06	f(1/2) = 0
Precision	22	g(1/2)	=	3.18556e+06	f(1/2) = 1
Precision	23	g(1/2)	=	1.32454e+07	f(1/2) = 2
Precision	24	g(1/2)	=	1.32454e+07	f(1/2) = 1
Precision	25	g(1/2)	=	6.29198e+07	f(1/2) = 2
Precision	26	g(1/2)	=	6.29198e+07	f(1/2) = 1
Precision	27	g(1/2)	=	1.00797e+09	f(1/2) = 0
Precision	28	g(1/2)	=	1.00797e+09	f(1/2) = 0
Precision	29	g(1/2)	=	1.00797e+09	f(1/2) = 2
Precision	30	g(1/2)	=	1.00797e+09	f(1/2) = 1
Precision	31	g(1/2)	=	1.64552e+10	f(1/2) = 0
Precision	32	g(1/2)	=	1.64552e+10	f(1/2) = 0
Precision	33	g(1/2)	=	1.64552e+10	f(1/2) = 0
Precision	34	g(1/2)	=	1.64552e+10	f(1/2) = 1
Precision	35	g(1/2)	=	3.90115e+11	f(1/2) = 0

Support

- MPFR manual in info, HTML and PDF formats (if installed).
- MPFR web site: http://www.mpfr.org/ (manual, FAQ, patches...).
- MPFR project page: https://gforge.inria.fr/projects/mpfr/ (with Subversion repository).
- Mailing-list mpfr@loria.fr with
 - official archives: http://websympa.loria.fr/wwsympa/arc/mpfr;
 - ► Gmane mirror: http://dir.gmane.org/gmane.comp.lib.mpfr.general.

43 messages per month in average.

How To Contribute to GNU MPFR

- Improve the documentation.
- Find, report and fix bugs.
- Improve the code coverage and/or contribute new test cases.
- Measure and improve the efficiency of the code.
- Contribute a new mathematical function.
 - Assign (you or your employer) the copyright of your code to the FSF.
 - Mathematical definition, specification (including the special data).
 - Choose one or several algorithms (with error analysis).
 - ▶ Implementation: conform to ISO C89, C99, and GNU Coding Standards.
 - Write a test program in tests (see slides on the tests).
 - Write the documentation (mpfr.texi), including the special cases.
 - ► Test the efficiency of your implementation (optional).
 - Send your contribution as a patch (obtained with svn diff).

More information: http://www.mpfr.org/contrib.html

34 / 35

The Future (MPFR 3)

- Licence upgrade to LGPL version 3 or later.
- Not compatible with previous versions (API / ABI).
 But only minor changes.
- Rounding modes GMP_RNDx renamed as MPFR_RNDx (the old ones are still
 available for compatibility, but are deprecated).
- New rounding mode MPFR_RNDA (away from zero).
- Faithful rounding (MPFR_RNDF)? Probably not in MPFR 3.0.
- New functions mpfr_buildopt_tls_p and mpfr_buildopt_decimal_p giving information about options used at MPFR build time.
- Other small changes.

MPFR 3.0 planned for the end of the year.