Introduction to the GNU MPFR Library

Vincent LEFEVRE

INRIA Grenoble — Rhéne-Alpes / LIP, ENS-Lyon

CNC'2, LORIA, 2009-06-25

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vincl7/vin]

Outline

@ Presentation, History

o MPFR Basics

@ OQutput Functions

o Test of MPFR (make check)

@ Applications

@ Conclusion

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

GNU MPFR in a Few Words

@ GNU MPEFR is an efficient multiple-precision floating-point library with
well-defined semantics (copying the good ideas from the IEEE-754 standard),
in particular correct rounding.

@ 80 mathematical functions, in addition to utility functions (assignments,
conversions. . .).

@ Special data (Not a Number, infinities, signed zeros).

@ Originally developed at LORIA, INRIA Nancy — Grand Est. Since the end of
2006, MPFR has become a joint project between the Arénaire and CACAO
project-teams.

@ Written in C (ISO 4+ optional extensions); based on GMP (mpn/mpz).
@ Licence: LGPL (currently 2.1 or later).

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 3/35

MPFR History

1998-2000
November 1998

Early 1999

9 June 1999
June-July 1999
2000-2002
February 2000
March 2000
June 2000
December 2000
2001-2002

ARC INRIA Fiable.

Foundation text (Guillaume Hanrot, Jean-Michel Muller,
Joris van der Hoeven, Paul Zimmermann).

First lines of code (G. Hanrot, P. Zimmermann).

First commit into CVS (later, SVN).

Sylvie Boldo (AGM, log).

ARC AOC (Arithmétique des Ordinateurs Certifiée).

First public version.

APP (Agence pour la Protection des Programmes) deposit.
Copyright assigned to the Free Software Foundation.
Vincent Lefévre joins the MPFR team.

David Daney (1-year postdoc).

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

4/35

MPFR History [2]

2003-2005
2004
September 2005
October 2005
August 2007
2007-2009
October 2007
March 2008
January 2009
March 2009

Patrick Pélissier.

GNU Fortran uses MPFR.

MPFR 2.2.0 is released (shared library, TLS support).

The MPFR team won the Many Digits Friendly Competition.
MPFR 2.3.0 is released (shared library enabled by default).
Philippe Théveny.

CEA-EDF-INRIA School Certified Numerical Computation.
GCC 4.3.0 release: GCC now uses MPFR in its middle-end.
GNU MPFR 2.4.0 is released (now a GNU package).

MPFR switches to LGPL v3+ (trunk, for MPFR 3.x).

Other contributions: Mathieu Dutour, Laurent Fousse, Emmanuel Jeandel,

Fabrice Rouillier,

Kevin Ryde, and others.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

5/35

Representation and Computation Model

Extension of the IEEE-754 standard to the arbitrary precision:
@ Base 2, precision p > 2 associated with each MPFR number.

o Format of normal numbers: £0.1bobs ... b, -2¢ with Enin < e < Emax
—————

p bits
(Emin and Enax are chosen by the user, 1 — 239 and 230 — 1 by default).

@ No subnormals, but can be emulated with mpfr_subnormalize.
@ Special MPFR data: +0, oo, NaN (only one kind, similar to sNaN).

@ Correct rounding in the 4 rounding modes of IEEE 754-1985:
Nearest-even, Downward, Upward, toward Zero.

In the future MPFR 3: Away from zero.

@ Correct rounding in any precision for any function. More than the accuracy,
needed for reproducibility of the results and for testing arithmetics.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 6 /35

Caveats

@ Correct rounding, variable precision and special numbers
— noticeable overhead in very small precisions.

@ Correct rounding — much slower
on (mostly rare) “bad” cases, but
slightly slower in average. Ziv's
strategy in MPFR:

> first evaluate the result with
slightly more precision (m)
than the target (p);

» if rounding is not possible,
then m «— m+ (32 or 64),
and recompute;

» for the following failures: rounded
m— m+ Lm/zJ result w

@ Huge exponent range and meaningful results — functions sin, cos and tan
on huge arguments are very slow and take a lot of memory. But. ..

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

7/35

Example: sin(10%)

’ Environment \ Computed value of sin 10?2 ‘
Exact result — 0.8522008497671888017727 . ..
MPFR (53 bits) —0.85220084976718879
Glibc 2.3.6 / x86 0.46261304076460175
Glibc 2.3.6 / x86_64 —0.85220084976718879
Mac OS X 10.4.11 / PowerPC —0.85220084977909205
Maple 10 (Digits = 17) —0.85220084976718880
Mathematica 5.0 (x867) 0.462613
MuPAD 3.2.0 —0.9873536182
HP 700 0.0
HP 375, 425t (4.3 BSD) —0.65365288.. ..
Solaris/SPARC —0.852200849. ..
IBM 3090/600S-VF AIX 370 0.0
PC: Borland TurboC 2.0 4.67734e—240
Sharp EL5806 —0.090748172

Note: 522 fits on 53 bits.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 8 /35

MPFR Program to Compute sin(10%2)

#include <stdio.h> /x for mpfr_printf, before #include <mpfr.h> */
#include <assert.h>

#include <gmp.h>

#include <mpfr.h>

int main (void)
{
mpfr_t x; int inex;
mpfr_init2 (x, 53);
inex = mpfr_set_ui (x, 10, GMP_RNDN); assert (inex == 0);
inex = mpfr_pow_ui (x, x, 22, GMP_RNDN); assert (inex == 0);
mpfr_sin (x, x, GMP_RNDN);
mpfr_printf ("sin(10722) = %.17Rg\n", x); /* new in MPFR 2.4.0 */
mpfr_clear (x);
return O;

}

Compile with: gcc -Wall -02 sinlOp22.c -o sinlOp22 -lmpfr -lgmp

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 9 /35

Exceptions (Global/Per-Thread Sticky Flags)

Invalid

Overflow

Underflow

Inexact

Erange

Result is not defined (NaN).
Examples: 0/0, log(—17), but also mpfr_set on a NaN.

The exponent of the rounded result with unbounded exponent range
would be larger than Ep .

Examples: 2Em and even mpfr_set (y,x,GMP_RNDU) with

x = nextbelow(+00) and prec(y) < prec(x).

The exponent of the rounded result with unbounded exponent range
would be smaller than En,.

Examples: If Eni, = —17, underflow occurs with 0.1e-17 / 2 and
0.11e-17 - 0.1e-17 (no subnormals).

The returned result is different from the exact result.

Range error when the result is not a MPFR datum.

Examples: mpfr_get_ui on negative value, mpfr_cmp on (NaN, x).

TODO: Add a DivideByZero (IEEE 754) or Infinitary (LIA-2) exception:
an exact infinite result is defined for a function on finite operands.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

10/ 35

The Ternary Value

Most functions that return a MPFR number as a result (pointer passed as the first
argument) also return a value of type int, called the ternary value:

= 0 The value stored in the destination is exact (no rounding) or NaN.

> 0 The value stored in the destination is greater than the exact result.

< 0 The value stored in the destination is less than the exact result.

When not already set, the inexact flag is set if and only if the ternary value is
nonzero.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 11 /35

Memory Handling

o Type mpfr_t: typedef __mpfr_struct mpfr_t[1];
» when a mpfr_t variable is declared, the structure is automatically allocated
(the variable must still be initialized with mpfr_init2 for the significand);

> in a function, the pointer itself is passed, so that in mpfr_add(a,b,c,rnd),
the object *a is modified;

> associated pointer: typedef __mpfr_struct *mpfr_ptr;

® MPFR numbers with more precision can be created internally.
Warning! Possible crash in extreme cases (like in most software).

@ Some MPFR functions may create caches, e.g. when computing constants
such as 7. Caches can be freed with mpfr_free_cache.

e MPFR internal data (exception flags, exponent range, caches...) are either
global or per-thread (if MPFR has been built with TLS support).

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 12 /35

Some Differences Between MPFR and |IEEE 754

@ No subnormals in MPFR, but can be emulated with mpfr_subnormalize.
@ MPFR has only one kind of NaN (behavior is similar to signaling NaNs).
o No DivideByZero exception. Invalid is a bit different (see NaNs).

@ Mathematical functions on special values follow the ISO C99 standard rather
than IEEE 754-2008 (more recent than the MPFR specifications).

@ Memory representation is different, but the mapping of a bit string (specified
by IEEE 754) into memory is implementation-defined anyway.

@ Some operations are not implemented.

@ And other minor differences. ..

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 13 /35

Output Functions

Simple output Formatted output
To file mpfr_out_str | mpfr_fprintf, mpfr_printf
To string mpfr_get_str mpfr_sprintf
MPFR version old 240
Locale-sensitive yes (2.2.0) yes
Base 2 to 36 2,10, 16
Read-back exactly | yes (prec = 0) yes! (empty precision field)

1Except for the conversion specifier g (or G) — documentation of MPFR 2.4.1 is incorrect.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 14 / 35

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Simple Output (mpfr_out_str, mpfr_get_str)

size_t mpfr_out_str (FILE *stream, int base, size_t n,
mpfr_t op, mp_rnd_t rnd)

Base b: from 2 to 36 (will be from 2 to 62 in MPFR 3).
Precision n: number of digits or 0. If n = 0:

@ The number of digits m is chosen large enough so that re-reading the printed
value with the same precision, assuming both output and input use rounding
to nearest, will recover the original value of op.

@ More precisely, if p is the precision of op, then m = [p.log(2)/ log(b)], and
m=[(p—1).log(2)/log(b)] when b is a power of 2 (it has been check that
these formulas are computed exactly for practical values of p).

Output to string: mpfr_get_str (on which mpfr_out_str is based).

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 15 / 35

Formatted Output Functions (printf-like)

New feature in MPFR 2.4.0!

Conversion specification:
% [flags] [width] [.[precision]] [type] [rounding] conv

Examples (32-bit x ~ 10000/81 =~ 123.45679012):

mpfr_printf ("%Rf %.6RDe %.6RUe\n", x, x, x);
> 123.45679012 1.234567e+02 1.234568e+02
mpfr_printf ("%11.1R*A\n", GMP_RNDD, x);
> 0X7.BP+4
mpfr_printf ("%.*Rb\n", 6, x);
> 1.111011p+6
mpfr_printf ("%.9Rg %#.9Rg\n", x, x);
> 123.45679 123.456790
mpfr_printf ("%#.*Rxg %#.9g\n", 8, GMP_RNDU, x, 10000./81.);
> 123.45680 123.456790

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 16 / 35

Test of MPFR (make check)

In the GCC development mailing-list, on 2007-12-29:
http://gcc.gnu.org/ml/gcc/2007-12/msg00707 . html

> On 29 December 2007 20:07, Dennis Clarke wrote:

>

>>

>> Do you have a testsuite ? Some battary of tests that can be thrown at the
>> code to determine correct responses to various calculations, error

>> conditions, underflows and rounding errors etc etc ?

>

> There’s a "make check" target in the tarball. I don’t know how thorough

> it is.

That is what scares me.

Dennis

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

17 / 35

http://gcc.gnu.org/ml/gcc/2007-12/msg00707.html

Test of MPFR (make check) [2]

Exhaustive testing is not possible.
— Particular and generic tests (random or not).

o Complete branch coverage (or almost), but not sufficient.

@ Function-specific or algorithm-specific values and other difficulties
(e.g., based on bugs that have been found).

© Bug found in some function.

@ Corresponding particular test added.
@ Analysis:

* Reason of the bug?
* Can a similar bug be found somewhere else in the MPFR code
(current or future)?

@ Corresponding generic test(s) added.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]
CNC'2, LORIA, 2009-06-25

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library

18 /35

What Is Tested

Special data in input or output: NaN, infinities, £0.

@ Inputs that yield exceptions, exact cases, or midpoint cases in
rounding-to-nearest.

@ Discontinuity points.

e Bit patterns: for some functions (arithmetic operations, integer power),
random inputs with long sequence of 0's and/or 1's.

@ Thresholds: bad cases, underflow/overflow thresholds (currently for a few
functions only).

o Extreme cases: tiny or huge input values.
@ Reuse of variables (reuse.c), e.g. in mpfr_exp(x,x,rnd).
@ The influence of previous data: exception flags, sign of the output variable.

@ Weird exponent range (not in the generic tests yet), e.g. [17,59].

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 19 / 35

The Generic Tests (tgeneric.c)

Basic Principle

A function is first evaluated on some input x in some target precision p + k, and if
one can deduce the result in precision p (i.e., the TMD does not occur), then one
evaluates f on the same input x in the target precision p, and compare the results.

@ The precision p and the inputs are chosen randomly (in some ranges).
Special values (tiny and huge inputs) can be tested too.

@ Functions with 2 inputs (possibly integer) are supported.

@ The exceptions are supported (with a consistency test of flags and values).

@ The ternary value is checked.

@ The evaluations can be performed in different flag contexts (to check the
sensitivity to the flags).

@ In the second evaluation, the precision of the inputs can be increased.

@ The exponent range is checked at the end (bug if not restored).

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 20 /35

Testing Bad Cases for Correct Rounding (TMD)

@ Small-precision worst cases found by exhaustive search (in practice, in double
precision), by using function data_check of tests.c. These worst cases are
currently not in the repository. Each bad case is tested

> in rounding-to-nearest, in target precision p — 1,
> in all the directed rounding modes in target precision p,

where p is the minimal precision of the corresponding breakpoint.

@ Random bad cases (when the inverse function is implemented), using the fact
that the input can have more precision than the output (function bad_cases
of tests.c):

@ A precision p, and a MPFR number y of precision p, are chosen randomly.

@ One computes x = f~*(y) in a precision p, = p, + k.
— In general, x is a bad case for f in precision p, for directed rounding modes
(and rounding-to-nearest for some smaller precision).

© One tests x in all the rounding modes (see above).

TODO: use Newton's iteration for the other functions?

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 21 /35

Application 1: Test of Sum Rounded to Odd

Algorithm OddRoundedAdd This algorithm returns the sum z = x + y
function z = OddRoundedAdd(x, y) | rounded-to-odd:

d = RD(x + y); @ RO(z) = z if z is a machine number;
u= RU(x + Y) e otherwise RO(z) is the value among
e’ = RN(d +u); RD(z) and RU(z) whose least

e =¢€ x0.5; { exact }

significant bit is a one.

z =(u—e)+d; {exact}

o’

The corresponding MPFR instructions:

mpfr_add (d, x, y, GMP_RNDD);
mpfr_add (u, x, y, GMP_RNDU);
mpfr_add (e, d, u, GMP_RNDN);
mpfr_div_2ui (e, e, 1, GMP_RNDN);
mpfr_sub (z, u, e, GMP_RNDN);
mpfr_add (z, z, d, GMP_RNDN);

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 22 /35

Application 1: Test of Sum Rounded to Odd [2]

#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
#include <mpfr.h>

#define LIST x, y, d, u, e, z

int main (int argc, char **argv)

{
mpfr_t LIST;
mp_prec_t prec;
int pprec; /* will be prec - 1 for mpfr_printf */

prec = atoi (argv([1]);
pprec = prec - 1;

mpfr_inits2 (prec, LIST, (mpfr_ptr) 0);

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 23 /35

Application 1: Test of Sum Rounded to Odd [3]

if (mpfr_set_str (x, argv[2], O, GMP_RNDN))
{
fprintf (stderr, "rndo-add: bad x value\n");
exit (1);
}
mpfr_printf ("x = %.*Rb\n", pprec, x);

if (mpfr_set_str (y, argv[3], O, GMP_RNDN))
{
fprintf (stderr, "rndo-add: bad y value\n");
exit (1);
}
mpfr_printf ("y = %.*Rb\n", pprec, y);

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 24 /35

Application 1: Test of Sum Rounded to Odd [4]

mpfr_add (d, x, y, GMP_RNDD);
mpfr_printf ("d = %.*Rb\n", pprec, d);

mpfr_add (u, x, y, GMP_RNDU);
mpfr_printf ("u = J%.*Rb\n", pprec, u);

mpfr_add (e, d, u, GMP_RNDN);
mpfr_div_2ui (e, e, 1, GMP_RNDN);
mpfr_printf ("e = %.*Rb\n", pprec, e);

mpfr_sub (z, u, e, GMP_RNDN);
mpfr_add (z, z, d, GMP_RNDN);
mpfr_printf ("z = %.*Rb\n", pprec, z);

mpfr_clears (LIST, (mpfr_ptr) 0);
return O;

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 25 /35

Application 2: Test of the Double Rounding Effect

Arguments: dmax, target precision n, extended precision p (by default, p = n).

Return all the couples of positive machine numbers (x,y) such that 1/2 <y < 1,
0 < Ex — E, < dmax, X — y is exactly representable in precision n and the results
of [on(op(x/y))] in the rounding modes toward 0 and to nearest are different.

#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>

#define PRECN x, y, z /* in precision n, t in precision p */

static unsigned long

eval (mpfr_t x, mpfr_t y, mpfr_t z, mpfr_t t, mpfr_rnd_t rnd)

{
mpfr_div (t, x, y, rnd); /* the division x/y in precision p */
mpfr_set (z, t, rnd); /* the rounding to the precision n */
mpfr_rint_floor (z, z, rnd); /* rnd shouldn’t matter */
return mpfr_get_ui (z, rnd); /* rnd shouldn’t matter */

}

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 26 /35

Application 2: Test of the Double Rounding Effect [2]

int main (int argc, char *argv[])
{

int dmax, n, p;

mpfr_t PRECN, t;

if (argc != 3 && argc != 4)
{ fprintf (stderr, "Usage: divworst <dmax> <n> [<p> I\n");
exit (EXIT_FAILURE); }

dmax = atoi (argv[1]);
n = atoi (argv[2]);
p = argc == 3 ? n : atoi (argv[3]);
if (p < n)
{ fprintf (stderr, "p must be greater or equal to n\n");
exit (EXIT_FAILURE); }

mpfr_inits2 (n, PRECN, (mpfr_ptr) 0);
mpfr_init2 (t, p);

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

27 / 35

Application 2: Test of the Double Rounding Effect [3]

for (mpfr_set_ui_2exp (x, 1, -1, GMP_RNDN);
mpfr_get_exp (x) <= dmax; mpfr_nextabove (x))
for (mpfr_set_ui_2exp (y, 1, -1, GMP_RNDN);
mpfr_get_exp (y) == 0; mpfr_nextabove (y))
{

unsigned long rz, rn;

if (mpfr_sub (z, x, y, GMP_RNDZ) != 0)
continue; /* x - y not representable in precision n */
rz = eval (x, y, z, t, GMP_RNDZ);
rn = eval (x, y, z, t, GMP_RNDN);
if (rz != rn)
mpfr_printf ("x = %.*#Rb ; y = %.*Rb ; Z: %lu ; N: lu\n",
n-1, x,n-1, y, rz, rn);

}

mpfr_clears (PRECN, t, (mpfr_ptr) 0);
return O;

}

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

28 / 35

Application 3: Continuity Test

Compute f(1/2) in some given (global) precision for
f(x) = (g(x)+ 1) — g(x) and g(x) = tan(mx).

#include <stdio.h>
#include <stdlib.h>
#include <mpfr.h>

int main (int argc, char *argv[])
{

mp_prec_t prec;

mpfr_t f, g;

if (argec !'= 2)
{
fprintf (stderr, "Usage: continuity2 <prec>\n");
exit (EXIT_FAILURE);
}

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 29 /35

Application 3: Continuity Test [2]

prec = atoi (argv([1]);
mpfr_inits2 (prec, f, g, (mpfr_ptr) 0);

mpfr_const_pi (g, GMP_RNDD);
mpfr_div_2ui (g, g, 1, GMP_RNDD);
mpfr_tan (g, g, GMP_RNDN);

mpfr_add_ui (£, g, 1, GMP_RNDN);
mpfr_sub (f, f, g, GMP_RNDN);
mpfr_printf ("g(1/2) = %-17Rg £(1/2) = YRg\n", g, £);

mpfr_clears (f, g, (mpfr_ptr) 0);
return O;

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 30/ 35

Application 3: Continuity Test [3]

Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision

© 00 ~NO O WN

=
= O

12
13
14
15
16
17
18

g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)
g(1/2)

16

14

14
120
120
121
2064
2064
2068
2066
2067
4172
8502
17674
38368
92555
314966

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

Introduction to the GNU MPFR Library

£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =
£(1/2) =

N, PP PP PPNOOOOEF,OOFLDNO

CNC'2, LORIA, 2009-06-25

31/ 35

Application 3: Continuity Test [4]

Precision 19 g(1/2) = 314967 £(1/2) =1
Precision 20 g(1/2) = 788898 £(1/2) =1
Precision 21 g(1/2) = 3.18556e+06 £(1/2) =0
Precision 22 g(1/2) = 3.18556e+06 £(1/2) =1
Precision 23 g(1/2) = 1.32454e+07 £(1/2) = 2
Precision 24 g(1/2) = 1.32454e+07 £(1/2) =1
Precision 25 g(1/2) = 6.29198e+07 £(1/2) = 2
Precision 26 g(1/2) = 6.29198e+07 £(1/2) =1
Precision 27 g(1/2) = 1.00797e+09 £(1/2) =0
Precision 28 g(1/2) = 1.00797e+09 £(1/2) =0
Precision 29 g(1/2) = 1.00797e+09 £(1/2) = 2
Precision 30 g(1/2) = 1.00797e+09 £(1/2) =1
Precision 31 g(1/2) = 1.64552e+10 £(1/2) = 0
Precision 32 g(1/2) = 1.64552e+10 £(1/2) =0
Precision 33 g(1/2) = 1.64552e+10 £(1/2) = 0
Precision 34 g(1/2) = 1.64552e+10 £(1/2) =1
Precision 35 g(1/2) = 3.90115e+11 £(1/2) =0

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 32 /35

Support

@ MPFR manual in info, HTML and PDF formats (if installed).

o MPFR web site: http://www.mpfr.org/ (manual, FAQ, patches...).

© MPFR project page: https://gforge.inria.fr/projects/mpfr/
(with Subversion repository).

@ Mailing-list mpfr@loria.fr with

» official archives: http://websympa.loria.fr/wwsympa/arc/mpfr;

» Gmane mirror: http://dir.gmane.org/gmane.comp.lib.mpfr.general.

43 messages per month in average.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25

33 /35

http://www.mpfr.org/
https://gforge.inria.fr/projects/mpfr/
http://websympa.loria.fr/wwsympa/arc/mpfr
http://dir.gmane.org/gmane.comp.lib.mpfr.general

How To Contribute to GNU MPFR

Improve the documentation.

Find, report and fix bugs.

Improve the code coverage and/or contribute new test cases.
@ Measure and improve the efficiency of the code.

Contribute a new mathematical function.

» Assign (you or your employer) the copyright of your code to the FSF.
Mathematical definition, specification (including the special data).
Choose one or several algorithms (with error analysis).

Implementation: conform to ISO C89, C99, and GNU Coding Standards.
Write a test program in tests (see slides on the tests).

Write the documentation (mpfr.texi), including the special cases.

Test the efficiency of your implementation (optional).

Send your contribution as a patch (obtained with svn diff).

vV vyvYVvY VY VvYYwYy

More information: http://www.mpfr.org/contrib.html

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 34 /35

http://www.mpfr.org/contrib.html

The Future (MPFR 3)

@ Licence upgrade to LGPL version 3 or later.

@ Not compatible with previous versions (APl / ABI).
But only minor changes.

@ Rounding modes GMP_RNDx renamed as MPFR_RNDx (the old ones are still
available for compatibility, but are deprecated).

@ New rounding mode MPFR_RNDA (away from zero).
e Faithful rounding (MPFR_RNDF)? Probably not in MPFR 3.0.

@ New functions mpfr_buildopt_tls_p and mpfr_buildopt_decimal_p
giving information about options used at MPFR build time.

@ Other small changes.

MPFR 3.0 planned for the end of the year.

[ecnc2009.tex 30104 2009-06-24 08:17:14Z vinc17/vin]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) Introduction to the GNU MPFR Library CNC'2, LORIA, 2009-06-25 35 /35

	Outline
	Presentation, History
	GNU MPFR in a Few Words
	MPFR History

	MPFR Basics
	Representation and Computation Model
	Caveats
	Example: sin(10^22)
	MPFR Program to Compute sin(10^22)
	Exceptions (Global/Per-Thread Sticky Flags)
	The Ternary Value
	Memory Handling
	Some Differences Between MPFR and IEEE 754

	Output Functions
	Simple Output (mpfr_out_str, mpfr_get_str)
	Formatted Output Functions (printf-like)

	Test of MPFR (make check)
	What Is Tested
	The Generic Tests (tgeneric.c)
	Testing Bad Cases for Correct Rounding (TMD)

	Applications
	Application 1: Test of Sum Rounded to Odd
	Application 2: Test of the Double Rounding Effect
	Application 3: Continuity Test

	Conclusion
	Support
	How To Contribute to GNU MPFR
	The Future (MPFR 3)

